Towards correct evolution of components
using VPA-based aspects

Dong Ha Nguyen and Mario Siidholt

OBASCO project; Ecole des Mines de Nantes - INRIA, LINA; Nantes, France
{Ha.Nguyen, Mario.Sudholt}@emn.fr

Abstract. Interaction protocols are a popular means to construct cor-
rect component-based systems. Aspects that modify such protocols are
interesting in this context because they support the evolution of such
components. A major question then is whether aspect-based evolutions
preserve fundamental notions of correctness, in particular compatibility
and substitutability, of components. In this paper we discuss how such
component correctness properties can be proven in the presence of as-
pect languages of limited expressiveness. Concretely, we show how com-
mon evolutions involving VPA-based aspects [12] can be proven correct
directly in terms of operators of the aspect language. Furthermore, we
present first ideas of how to use existing model checkers for the automatic
verification of such properties.

1 Motivation

Interaction protocols are a popular means to construct correct component-based
systems and document them [19, 6]. Relying on explicit protocols, evolution of
component-based systems can be frequently expressed in a concise manner using
aspects that modify such protocols [12].

A major question for the evolution of component-based systems is whether
evolution preserves compositional properties of these systems, in particular com-
patibility and substitutability of components, two fundamental notions that are
typically defined in terms of subset relationships of trace and failure sets admit-
ted by the original and evolved versions of a system [19, 13]. Currently, almost all
component-based systems with interaction protocols have used finite-state pro-
tocols; only few work has explored the preservation of compositional properties
in the context of aspects modifying such interaction protocols.

In this paper we consider how compositional properties can be defined and
verified in the context of the evolution of components that are equipped with a
more expressive brand of interaction protocols, protocols defined in terms of Vis-
ibly Pushdown Automata (VPA) [2]. VPA allow to define protocols that include
well-formed nested contexts, such as correct nesting of recursive calls to and re-
turns from a server. VPAs are strictly more expressive than finite-state automata

* This work has been supported by AOSD-Europe, the European Network of Excel-
lence in AOSD (http://www.aosd-europe.net).

(which generate regular languages) but strictly less so than pushdown automata
(which generate context-free languages). In contrast to finite-state based sys-
tems, VPA-based protocols allow (some) nested terms to be correctly matched
without having to restrict the nesting depth. In contrast to pushdown automata,
VP languages are closed under all basic operations, including intersection and
complement, and all basic decision problems are decidable. As the main contribu-
tion of this paper, we discuss how compatibility and substitutability properties of
component-based applications can be proven if interaction protocols are subject
to evolution using VPA-based aspects [12].

Concretely, we motivate and sketch three extensions to the VPA-based aspect
language that are useful for the evolution of component systems: a more general
definition of sequence pointcuts, a new pointcut operator that allows nested con-
texts to be matched if their depths exceed a threshold and a new advice construct
that allows to close an open nested context. Furthermore, we introduce several
proof methods that can be used to prove the preservation of compositional prop-
erties if the resulting aspect language is used for component evolution. Finally,
we present preliminary results how to use existing model checking techniques for
the automatic verification of such properties.

The paper is structured as follows. In Section 2, we motivate and sketch
three extensions to our VPA-based aspect language. We introduce corresponding
proof methods for software components in Sec. 3. VPA-based aspects and model
checking techniques are the subject of Sec. 4. Finally, we give a conclusion and
present future work in Sec. 6.

2 VPA-based aspects for component evolution

In the following we illustrate the use of expressive, i.e., non-regular aspect lan-
guages in the context of (distributed and recursive) P2P algorithms. Fig. 1(a)
shows a protocol which allows nodes to join or quit a P2P network, repeatedly
execute recursive queries and abort queries if requested (by means of an advice
abortRequest > abort).

The regular aspect on the left hand side does not enforce an important re-
striction: abort requests should only be allowed if there is at least one on-going
query (the number of replies occurring at state 1 may equal or even exceed the
number of queries in the regular case). The VPA-based aspect shown on the right
hand side, however, ensures this property by distinguishing the first query and
the matching reply events from the remaining ones by associating stack symbols
to transitions (in the figure, stack symbols are set as indexes to execution events
and matching replies are underlined). Abort requests therefore may occur only
in contexts where at least one query is open. Furthermore, VPAs ensure that
there cannot be more abortRequest events than query events.

In previous work [12], we have proposed a language for VPA-based aspects
and a corresponding execution library. This language allows to define pointcuts in
terms of paths in a VPA whose matching during execution of a base application,
e.g., an OO program, triggers the execution of advice as illustrated in 1(b). We

- quer
join abortRequest > abort

TN
o

\/@

aborted
(a) Aborting on-going queries (regular)

- queryq
join queryrs abortReguest > abort

e
@@O\/@)
quit replyrs roply, borted

(b) Aborting on-going queries (VPA)

now illustrate that VPA-based aspects are useful for the evolution of compo-
nent-based systems by presenting evolutions that can be supported using three
new operators that extend our original aspect language.

Evolution of the recursive structure of P2P algorithms using pointcut operators.
Evolution of distributed algorithms, such as P2P algorithms, often aims at the
optimization of the underlying traversal strategy. A simple example of a corre-
sponding heuristic is to perform a more superficial but faster search on nodes
whose distance from the root node exceeds a certain threshold. Since VPAs faith-
fully allow to define the depth of nested terms, such heuristics can be directly
expressed using a pointcut operator D, ¥ that matches only calls to m that oc-
cur at a depth larger than k. For example, the following aspect caches queries at
depth greater than 5 (where pa. .. .;a denotes recursion in VPA-based aspects):
pa. D25 > getCacheValue ; a

queryq

Accomodating new execution events through general sequencing of pointcuts. The
evolution of component systems frequently requires to cope with new execution
events, either by abstracting from them (i.e., allow interleaving of such events
on the protocol level) or, to the contrary, forbid the occurrence of such events.
Current aspect languages for protocols typically include a sequence operator ; on
the pointcut level, such that terms a; b allow either no interleaving (i.e., the term
corresponds to a single-step transition as, e.g., JAsCo’s stateful aspects [17]) or
interleaving of arbitrary events between occurrences of a and b (as the stateful
aspects of [4,12]).
Using the latter semantics, the aspect

pa. join ; queryq > createSession ; a

(repeatedly) creates sessions once the current node has joined a P2P network,
occurrences of arbitrary events followed by a query. However, the occurrence

of events, e.g., accessing the result of a query before execution of the query,
cannot be ruled out with this form of sequencing alone. Relying only on the
first semantics, individual transitions yield awkward formulations of non-trivial
protocol-modifying aspects because all interleaving of events has to be defined
explicitly.

In order to allow the concise definition of protocol evolution by arbitrary
interleaving as well as through the (mandatory) absence of interleaving we have
introduced a general sequencing operator ;7 where 7 specifies the set of events,
possibly @, that may be interleaved between the argument events.

The evolution consisting in forbidding previous accesses to the query result
can then simply be expressed as:

HG. JOIN - qecessResult QUETYq D> createSession ; a

Handling of error conditions using advice operators. The evolution of compo-
nent-based systems frequently consists in the introduction of behavior to cor-
rectly handle error situations. In the case of recursive distributed algorithms er-
ror handling may involve the introduction of events that close a number of open
recursive calls in order to skip the traversal of part of the underlying distributed
network in which an error occured. Using VPA-based aspects such error handling
strategies can be expressed using the advice-level operation closeOpenClall,, that
closes the open call to m: pointcuts matching on nested contexts can then be
used to restrict the application of such advice to appropriate parts of the net-
work. The following example illustrates the use of a closing operator to add a
number of “fake” replies to queries when the query exceeds a given connection
timeout (where [J denotes the choice between alternatives):

pa. queryy; (replyy O (connectionTimeOut > closeOpenCallguery,)) 5 a

3 Preservation of compositional properties

In this section we address the problem whether compositional systems that are
subjected to evolution by VPA-based aspects can be proven to preserve funda-
mental composition properties. Our main point is that, in contrast to general
aspect languages such as AspectJ, VPA-based aspect programs are amenable to
formal correctness proofs.

Figure 1 illustrates the underlying model of component evolution and the
compositional properties we consider. Starting from two protocols p1, ps that
constrain the interactions of two collaborating components C7, Cy a VPA-based
aspect A is applied to ps yielding the protocol ps that defines the interactions of
the component C3 after evolution. As indicated in the figure we are interested
in two fundamental correctness properties for components, compatibility and
substitutability (see, e.g., [13]).

Generally, e.g., if turing-complete pointcut and advice languages are used
for component evolution (as in AspectJ where arbitrary Java methods may be
called in if-pointcuts and advice), such component properties cannot be proven

compatibility or substitutability

Cy holds C>
b1 p2
T~ - apply aspect A
Is compatibility or substitutabili\ty\ S~ Y
preserved ? ~~d ps | evolved component ps = A(p2)

Cs
Fig. 1. Checking for preservation of compatibility/substitutability

formally. Furthermore, even in specific cases where a proof is possible, it can
typically be performed only in terms of the woven program and not simply in
terms of the aspects themselves. VPA-based aspects, however, support formal
proofs of such properties because of their limited expressiveness and allow some
important properties be proven simply by considering properties of the aspect
language only. To this end we propose to exploit the “domain specific” char-
acteristics of VPA-based aspects: proofs over nested contexts as well as regular
structures can be performed directly in terms of corresponding features of our
pointcut (indexed calls) and advice language (closeOpenCall).

Concretely, we demonstrate in the following three different types of proofs of
property preservation that are supported by VPA-based aspects:

P1) Proofs that depend only on the properties of the aspect language, i.e., that
can be performed in terms of the evolution aspect A only.

P2) Proofs that can be performed in terms of A and properties of classes of
protocols to which p; and ps belong.

P3) Proofs that require full knowledge of A and p;—ps.

We use standard trace-based notions of compatibility and substitutability [19]
in this paper. Two protocols are compatible if they do not give rise to any conflict
during execution, ¢.e., no unexpected message is received during collaboration
of two components according to their respective protocols. Substitutability of
components is defined using trace set inclusion: protocol p; is substitutable for p,
if its trace set is a superset of the trace set generated by protocol py. Since VPAs
are closed under complement (“negation”) it is, however, possible to apply the
proof methods to more expressive notions of composition properties, for instance
substitutability in the presence of failures [13].

In the following we will present three examples that illustrate the different
proof types introduced above.

P1: supporting evolution of error handling. VPA-based aspects are unique (in
particular compared to finite-state based approaches) in being able to handle
a large class of traversals of distributed recursive algorithms, such as P2P al-
gorithms. Frequently, error handling in such algorithms consists in terminating
the exploration of some part of the network and search elsewhere. The action
closeOpenCall(m) that we have introduced in the advice language directly sup-
ports such error strategies by allowing to close a nested call of the method m.

We can exploit the precisely defined semantics and limited effect of the action
closeOpenCall to prove some corresponding properties simply in terms of its
definition. For example:

If p1,p2 are protocols that recurse using m, po is substitutable for p; and
aspect A employs closeOpenCall to add returns of m at the end of the
execution of protocol ps, then the adapted protocol ps is substitutable
for p;.

P2: proving compatibility for depth-cutting heuristics. Recursive distributed al-
gorithms frequently do not unconditionally stop traversals at the top level, but
typically do so only in specific contexts. A common example are heuristics that
are formulated in terms of the traversal depth from the node where the search has
been initiated. Since VPA-based aspect allow the explicit definition of aspects
in terms of the nesting depth using the pointcut operator Dﬁjj, corresponding
compositional properties can be proven in terms of properties of this operator
and classes of protocols to which it is applied. For example:

If
— p1 belongs to the class of recursive protocols that repeatedly allows
recursive remote calls and returns in m: pa.m. O m. ; a,
— p2 belongs to the class of protocols that include a remote call to m,
— p1, p2 are protocol compatible and
— aspect A employs a depth-defining operator D,i’: applying over ps
Then p; and A(ps) are also compatible.

This property holds because the aspect may only cut calls to m from traces
of po: the resulting traces remain compatible with those admitted by p;.

P3: proving substitutability in terms of p1,p2 and A. Let us reconsider protocols
p1,p2 as in the first example i.e., po represents a less restrictive recursive protocol
than p; and ps is substitutable for p;. Assume that now we would like to adapt
protocol po in order to cut the depth of queries to k using an aspect with a
depth-defining operator Dﬁff In this case the resulting protocol p3 is in general
not substitutable for p;, since p; may admit calls of depth deeper than k. By
an analysis of p;, we may find that the depth limit of p; is ¢ and ¢ < k: we can
then prove that p3 is actually substitutable for p;.

4 Towards model checking of VPA-based properties

We now consider the problem of using model checking techniques as a support for
proving the preservation of properties of component systems that are subject to
aspect-based evolution. We present first preliminary results on two main issues
concerning the application of model checking: (i) adaption of the default model
checking procedure to the verification of systems with VPA-based aspects and
(ii) selection of an appropriate model checker.

Goldman and Katz [9] have introduced a formal framework for verifying the
correctness of an aspect in a modular way. The general ideas of that approach
are as follows. Assume that an aspect is defined by its pointcut designator p and
advice A represented by a single state machine. Furthermore, the assumptions
of the aspect about the base programs into which it may be woven are explicitly
specified in form of an LTL formula ¢ from which a tableau T, can be con-
structed. Weaving two state machines respectively represented by the tableau
Ty and aspect advice A according to pointcut p results in an augmented state
machine for the composed system T; Then a model checker is employed to

verify whether the system T, satisfies a property ¢ over the complete system.
This means that if we could establish that a specific base program satisfies the
assumptions ¢ we do not have to run the verification process again in case it
has already been done for the combination A, p, ¥, and ¢ before. Moreover, the
real composed system has never to be model checked and thus this verification
approach achieves modularity.

We plan to adapt the above framework for model checking to the correctness
of VPA-based aspects. The underlying idea of the adaptation is to define an
abstraction of VPA-based programs and aspects into regular systems and then
apply model checking techniques. Application of existing model checkers requires
to fix the depth of recursive contexts matched through VPA-based expressions,
which implies to sacrifice some accuracy by using a suitable approximation.
Through an extension of the approach of Goldman and Katz we intend to provide
a means to efficiently model check abstractions of recursive VPA-based structures
in which the depth is fixed but arbitrary.

Table 1. Some model checkers and corresponding properties

Model checker |System model Property |Remarks

SPIN Promela (SPIN’s language) |LTL popular

NuSMV Finite state machine CTL,LTL |popular

CBMC C source code

Bandera Java source code no longer developed
UPPAAL Real-time automata CTL

Verus Real-time automata CTL no longer developed

A second important factor for such an approach is the specific model checker
being selected because of their rather different features, such as their system
models, that are more or less suitable for our endeavor. Table 1 presents a list
of some well-known model checkers and some of their features.

Three properties of model checkers we are particularly interested in are (i)
how the input system can be modeled, (ii) what types of properties are sup-
ported, and (iii) how large of a system on which it can model check.

System model. All model checkers on Table 1 input system models as textual
descriptions of state machines in their respective, specific formats. As previously

mentioned, since we are dealing with VPA-based systems, we have to transform
them to less expressive automata then encode them in the input formats which
are supported by these model checkers. This can be automatically done by a
transformation tool, but should be easier for checkers using input languages
similar to state machines (such as NuSMV and SPIN) than for checkers using
general purpose languages (CBMC and Bandera).

Property specification. Most of the model checkers support property specified
in some variants of LTL or CTL logics. Among them, model checker NuSMV
provides the most flexibility by accepting both LTL and CTL properties. Check-
ers that are geared towards the handling of specific classes of properties (e.g.,
real-time properties in the case of UPPAAL and Verus) seem less appropriate
for our approach.

Scalability. Since the abstraction from VPA-based properties to regular sys-
tems generates large finite-state machines (that are of a very specific form), the
scalability of model checkers is an important criterion for the feasibility of our
approach. However, while the first two features, system and property specifica-
tion of model checkers, can be evaluated simply, it is more difficult to have a
comparative view on the scalability feature since verification tools are typically
designed and optimized for different specific domains. Among current model
checkers, SPIN and NuSMYV are highly recognized for their effectiveness in the
presence of large systems.

Taking all the factors into consideration, we have chosen to perform first experi-
ments on the model checking of VPA-based evolution properties using SPIN and
NuSMV.

5 Related work

There is few related work on aspect-based evolution for component-based sys-
tems that considers the preservation of correctness properties for those systems
after being changed by aspects. As to the best of our knowledge, this proposal
is the first exploiting formal methods to investigate the preservation of composi-
tional properties such as compatibility and substitutability for component-based
systems that are subject to evolution by protocol-modifying aspects. However,
our work still shares common interests with a large body of work covering as-
pects, components, and applications of formal methods on analysis and verifica-
tion.

There are some approaches which consider aspect languages that support pro-
tocols, most notably [1,5, 18]. Approaches [1, 5] feature regular aspect languages
and a framework for static analysis of interaction properties. The language in-
troduced by Walker and Viggers[18], one of the very few approaches providing
non-regular (but not turing-complete) pointcut languages, proposes tracecuts
which provide a context-free pointcut language. However, all of the above ap-
proaches do not use the language for an integration of aspects and components

or explore the problem of property-preserving for systems that have protocols
being modified by aspects. Farfas [7] has proposed a regular aspect language for
components that admits advice modifying the static structure of protocols and
considered proof techniques for the resulting finite-state based aspects.

There exist a large number of proposals that aim at applying AOP over
component-based systems, e.g., [8,16,14]. However, the aspect languages in
those approaches do not provide explicit support for component protocols. Some
of these approaches consider component compatibility, however, in a limited
sense to our work: aspects are usually employed in such work to transparently
introduce adaptation to components and thus preserve component compatibility.
Our approach, in contrast, focuses on preserving protocol compatibility even if
aspects have visible effects on interaction protocols.

Few work on evolution of component protocols seems relevant to our work.
Braccialia et al. [3] present a formal methodology for automatically adapting
components with mismatching interacting behaviors i.e., conflicts at the protocol
level. Protocols considered there are expressed by using a subset of u—calculus.
They do not consider how component properties can be proved in terms of proof
methods that exploit properties of modification operators. Ryan and Wolf [15]
investigate how applications can accommodate protocol evolution. However, this
approach concerns mainly syntactic changes on protocols.

Another category of related work is the application of formal methods to anal-
yse aspect systems, such as [10,11]. Our approach differs from those approaches
in that we exploit the protocol-based specificities of our aspect language to prove
composition properties of software components.

6 Conclusion and future work

In this paper we have investigated the preservation of compositional properties
in the context of aspect-based evolutions on components. We have shown that
aspect languages of limited expressiveness admit formal proofs of fundamental
compositional properties directly in terms of the aspect languages. Concretely,
we have shown that VPA-based aspects support formal proofs of component
compatibility and substitutability in the presence of aspect-based evolutions of
recursive distributed algorithms. As a second contribution, we have introduced
three extensions to our VPA-based aspect language that support common evo-
lutions: a more flexible sequencing operator, a depth-defining pointcut operator
and a closing operator for recursive calls. Finally, we have presented first ideas
of how to use use existing model checkers for the automatic verification of such
properties and evaluated the characteristics of some popular model checkers to
this end.

In the future we intend to work on extensions of the aspect language for VPA-
based properties, extend the set of component evolutions that can be handled
with our approach and provide a working method for the automatic verification
of such evolutions with existing model checkers.

References

10.

11.

12.

13.

14.

15.

16.

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, et al. Adding trace match-
ing with free variables to AspectJ. In Richard P. Gabriel, editor, ACM Confer-
ence on Object-Oriented Programming, Systems and Languages (OOPSLA). ACM
Press, 2005.

Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown languages. In
Proceedings of the thirty-sixth annual ACM Symposium on Theory of Computing
(STOC-04), pages 202-211, New York, June 13-15 2004. ACM Press.

Andrea Braccialia, Antonio Brogi, and Carlos Canal. A formal approach to com-
ponent adaptation. Journal of Systems and Software, 2005.

R. Douence, P. Fradet, and M. Siidholt. A framework for the detection and res-
olution of aspect interactions. In Proc. of GPCE’02, LNCS 2487, pages 173—-188.
Springer Verlag, October 2002.

Rémi Douence, Pascal Fradet, and Mario Siidholt. Composition, reuse and inter-
action analysis of stateful aspects. In Proc. of 3rd International Conference on
Aspect-Oriented Software Development (AOSD’04), pages 141-150. ACM Press,
March 2004.

Andrés Farfas and Mario Siidholt. On components with explicit protocols satisfying
a notion of correctness by construction. In International Symposium on Distributed
Objects and Applications (DOA), volume 2519 of LNCS, pages 995-1006, 2002.
Andrés Farias and Mario Stidholt. Integrating protocol aspects with software com-
ponents to address dependability concerns. Technical Report 04/6/INFO, Ecole
des Mines de Nantes, November 2004.

Steffen Gobel, Chrstoph Pohl, Simone Rottger, and Steffen Zschaler. The
COMQUAD component model — enabling dynamic selection of implementations
by weaving non-functional aspects. In Proceedings of AOSD’04. ACM Press, 2004.
Max Goldman and Shmuel Katz. Maven: Modular aspect verification. In TACAS,
pages 308-322, 2007.

Shmuel Katz and Marcelo Sihman. Aspect validation using model checking. In
Verification: Theory and Practice, pages 373-394, 2003.

Shriram Krishnamurthi and Kathi Fisler. Foundations of incremental aspect
model-checking. ACM Trans. Softw. Eng. Methodol., 16(2):7, 2007.

Dong Ha Nguyen and Mario Siidholt. VPA-based aspects: better support for AOP
over protocols. In 4th IEEE International Conference on Software Engineering and
Formal Methods (SEFM’06). IEEE Press, September 2006.

Oscar Nierstrasz. Regular types for active objects. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software Composition, chapter 4, pages
99-121. Prentice Hall, 1995.

Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A
model for developing component-based and aspect-oriented systems. In Proceedings
of the 5th International Symposium on Software Composition (SC06), volume 4089
of Lecture Notes in Computer Science, page 259273, Vienna, Austria, mar 2006.
Springer-Verlag.

Nathan D. Ryan and Alexander L. Wolf. Using event-based translation to support
dynamic protocol evolution. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 408-417, Washington, DC, USA, 2004.
IEEE Computer Society.

Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JasCo; an aspect-oriented
approach tailored for component-based software development. In ACM Press,

17.

18.

19.

editor, Proc. of 2nd International Conference on Aspect-Oriented Software Devel-
opment (AOSD’03), pages 21-29, March 2003.

W. Vanderperren, D. Suvee, M. A. Cibran, and B. De Fraine. Stateful aspects in
JAsCo. In Proc. of SC’05, LNCS 3628. Springer Verlag, April 2005.

Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event
patterns. In Proceedings of the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE-12), pages 159 — 169. ACM Press, 2004.
Daniel M. Yellin and Robert E. Strom. Protocol specifications and component
adaptors. ACM Transactions of Programming Languages and Systems, 19(2):292—
333, March 1997.

